
Model and Data Watermarking

Micah Goldblum

1 Proof-of-Ownership

Companies own proprietary models they want to protect. A bad actor might either use a
company’s models against their terms of service (e.g. in the case of publicly available models
without a commercial license) or distill their models if the models lie behind an API. So
how can companies detect if another party’s models are stolen copies of their own?

2 Model Watermarks

One way to protect proprietary models in such a scenario is to implant a signature, called
a watermark, on the models which would be unlikely to appear in other non-copied models
but which will be easy to detect in copies. Then, if a prospective model possesses this
watermark, we can be confident that it is a copy. Below, we discuss some of the criteria
for effective model watermarks, and we will subsequently discuss how watermarks work in
practice.

2.1 Desiderata

• Robustness - model watermarks should resist removal attempts. For example, if an
adversary fine-tunes the model, compresses its parameters, permutes the neurons, or
adds noise to parameters or outputs to remove the watermark so that nobody can
catch their theft, the watermark should still be detectable.

• Detectability - model watermarks should be easy and efficient to detect for the relevant
party. Ideally, they should provide performance guarantees. On the other hand, one
might want watermarks to be very difficult for adversarial parties to detect since this
might make attacks easier.

• Performance preservation - embedding a watermark should not damage the perfor-
mance of the model.

• Convenience and efficiency - embedding the watermark should not incur a substan-
tial computational cost and should be easily accessible (i.e. not requiring specialized
domain expertise) to anyone who deploys models.

• Generality - the watermarking technique should be applicable to all sorts of models,
not just specific to LLMs or diffusion models, etc. Watermarking a new type of model
should not require developing a new tailored watermarking technique.

1

• Capacity - The watermark should carry enough bits of information, which can be ran-
domly generated, so that another model would unlikely contain that same information
by chance.

3 Weight-Space Watermarking

These watermarks implant a signature on model parameters directly. On the one hand,
an advantage of this approach is that such a watermark could be detected without ex-
pensive forward passes through the model, and in some cases, a weight-space watermark
could perhaps be implanted in an already-trained model. On the other hand, weight-space
watermarks may be fooled by attacks that change the parameters a lot without changing
predictions much if at all, they might not be effective against distillation (which an attacker
could perform even with API access and no access to the model’s weights), and they may
be impossible to detect on models hidden behind an API where weights are not accessible.

• https://arxiv.org/abs/1701.04082 [9]

– Uses a regularizer during training to inject statistical patterns into model param-
eters.

– Focuses on convolutional networks.

– Consider randomly generated sequence of T bits b ∈ {0, 1}T which we want to
encode in the model’s parameters.

– Also, consider a convolutional tensor Wijkl with L different S × S × D filters.
Then, define W ijk = 1

L

∑
l Wijkl, and flatten this tensor out to w ∈ RM , where

M = S×S×D. We will embed b into w. Since w is averaged over all convolutional
filters, an adversary cannot permute the filters to remove the watermark.

– Here’s how we embed b into w: During training, we can add on a regularizer to
our loss function,

ER(w) = −
T∑

j=1

[bj log(yj) + (1− bj) log(1− yj)],

where yj = σ(
∑

i Xjiwi), and σ is the sigmoid function, σ(x) = 1
1+e−x . This

objective is equivalent to binary classification loss, so that w gets classified into
the correct bit value for each bit bj in the watermark sequence b.

– σ(
∑

i Xjiwi) can be viewed as a linear classifier.

– X is randomly generated and can be viewed as a secret key for detecting the
watermark. Without this key, it was hypothesized that detecting the key is
impossible.

– The distribution used to generate X may impact the watermark’s detectability,
and N(0, 1) works well.

• https://scholar.harvard.edu/files/tianhaowang/files/icassp.pdf [11]

– This work shows that the weight-space watermark above is actually detectable
as it injects distinct statistical patterns into the model weights.

2

https://arxiv.org/abs/1701.04082
https://scholar.harvard.edu/files/tianhaowang/files/icassp.pdf

– We can determine the length of the watermark.

– We can even overwrite the watermark to avoid detection of a stolen model. Over-
writing is performed by generating new X and fine-tuning the model for several
epochs.

– This work seems to make assumptions about the generating distribution of X
which could be relaxed to fool them.

• https://library.imaging.org/ei/articles/32/4/art00003 [10]

– The first watermarking algorithm we examined contains random linear classifiers
where their input (watermarked neural network weights) is optimized instead of
the linear classifier’s weights, which were only randomly initialized.

– This work uses a small neural network for watermark verification instead of the
linear classifiers.

– Optimize the small verification neural network jointly with the watermarked
model.

• https://arxiv.org/abs/1910.14268 [12]

– We saw previously that watermarks can sometimes be detected because of sta-
tistical patterns they leave in the model’s parameters.

– How can we make watermarks that are undetectable.

– This work develops a GAN-like approach, where a discriminator is trained simul-
taneously to detect a watermark. Then, the watermark is trained to maximize
the discriminator loss during model training, to encouraging the model to embed
an undetectable watermark by fooling the discriminator.

4 Function-Space Watermarking

These watermarks are instead embedded in the model’s outputs rather than its weights ex-
plicitly. Specifically, a model watermarked in this fashion will exhibit a particular detectable
output behavior, typically when presented with certain query inputs. Function-space wa-
termarks can enable us to detect stolen models hidden behind APIs and may be robust
to distillation or fine-tuning, but they may not provide statistical guarantees when models
are not trained or fine-tuned specifically for the watermark. They also require potentially
expensive forward passes.

• https://arxiv.org/abs/1802.04633 [1]

– This work frames the watermarking problem as implanting a backdoor.

– We begin by generating n query images, for example with random pixels or
strange patterns, and assign them each a random label (assuming the water-
marked model will be a classifier with k labels).

– Then, we append the n query images to the model’s training dataset.

– Assuming another model does not contain the associated watermark, then the
number of labels it assigns correctly to the query images is binomially distributed
B(n, 1/k).

3

https://library.imaging.org/ei/articles/32/4/art00003
https://arxiv.org/abs/1910.14268
https://arxiv.org/abs/1802.04633

– Using that information, we can perform a hypothesis test, namely by counting
the number of labels a prospective model assigns correctly to the query images
and computing the probability that a model would assign at least that many
correct labels if it were not watermarked.

– This method does not require that the images be random pixels, it only requires
that the labels be random.

– The power of the test improves rapidly with the number of samples and the
number of classes.

– This method generalizes outside of images and is agnostic to the architecture of
the model.

– We can think of the query images as a secret key for detecting the watermark
whereby an adversary who does not possess the query images will likely not be
able to detect that the model is watermarked, although this is not guaranteed.

– Backdoor removal methods do exist, and it’s not clear if they have been rigorously
tested here.

• https://arxiv.org/abs/1711.01894 [7]

– This paper does the same thing but uses adversarial examples that are correctly
labeled.

– Advantages of this approach are robustness of the watermark to removal attempts
and also that models which are not watermarked will pass the detector in few
queries.

• https://arxiv.org/abs/1906.00830 [8]

– This paper instead assumes we have a model behind an API and we want to
watermark any model that trains on our outputs (distillation attempts).

– To that end, we can modify the output of a small fraction of API query samples
and store the corresponding inputs to use for detecting that another model was
distilled from those outputs.

– We can make the watermark user-specific, so that we know exactly which client
was responsible for acquiring the data on which to perform distillation.

• https://proceedings.mlr.press/v162/bansal22a.html [2]

– Uses randomized smoothing to guarantee that any removal attack has to change
the parameters a lot.

– Randomized smoothing was designed as a certifiable defense against adversarial
attacks whereby one can show that an input will have to move a certain amount
to flip a classifier’s prediction.

– This work instead applies randomized smoothing to the parameters of the model
instead of the inputs to guarantee that the parameters have to move a certain
amount to change the predictions, namely on the query images we described
above.

– Limitation: moving the parameters a lot may not be difficult to do in a removal
attack.

4

https://arxiv.org/abs/1711.01894
https://arxiv.org/abs/1906.00830
https://proceedings.mlr.press/v162/bansal22a.html

5 Data Watermarking

5.1 Text Watermarking

These watermarks don’t prove ownership of a stolen model; they prove that text was gen-
erated by a particular party. Specifically, the watermark is embedded in the text generated
by an LLM instead of the model’s weights or predictions. So for example, if a client agrees
that text generated by language model X will not be used to do Y, how can we prove that
the text they used to do Y was in fact generated by model X? To accomplish this task, text
watermarks imperceptibly modify the output distributions of language models so that they
can still generate good text but prefer certain tokens or token sequences. Data watermarks
typically operate on top of a pre-trained model, simply by changing the sampling procedure,
and do not modify its weights at all. Therefore, a malicious party with a stolen copy of the
model can typically generate samples at will without watermarks.

• https://arxiv.org/abs/2301.10226 [4]

– The following describes a sampling procedure for autoregressive language models
that watermarks the generated text.

– Every we generate a token, pseudo-randomly split all tokens in the vocabulary
in half into a green list and a red list.

– We can use the previous token as a random seed, or we can use several previous
tokens.

– Then, we add a small number to each logit corresponding to a green list token
before computing softmax and sampling.

– Watermarked text will have more green list tokens than red list tokens. In con-
trast, a non-watermarked model would only generate green list tokens roughly
half of the time.

– Thus, we can run a hypothesis test whereby we measure the probability of gen-
erating the observed number of green list tokens by random chance.

– In this case, we can view the green/red list generator as the secret key for de-
tecting the watermark.

– Empirically, this watermark does not significantly degrade the quality of gener-
ated text.

• https://arxiv.org/abs/2306.04634 [5]

– This work studies the robustness of watermarking to removal attacks. In this
case, unlike the model watermarking case where watermarks are removed from a
model, the watermark is removed from generated text. Removal attacks in the
case of text watermarks take the form of paraphrasing.

– This work finds that paraphrasing attacks can be effective on short text snippets,
but the watermark can still be detected with enough text.

– This work also introduces an improved watermark detection scheme, WinMax,
which searches for short spans of watermarked text in a row that often appear
even under paraphrasing attacks since even a single word can contain multiple
green list tokens in a row.

5

https://arxiv.org/abs/2301.10226
https://arxiv.org/abs/2306.04634

• https://arxiv.org/abs/2306.09194 [3]

– The previously described text watermark method has a glaring problem; it changes
the distribution of sampled text. This could manifest in detectable watermarks
or performance degradations. How can we implant undetectable watermarks in
a language model?

– The following is a simplified procedure. Imagine a language model that only
outputs 0’s and 1’s. Let’s call the probability that the model assigns to the
output 1 for the ith token, conditioned on previously sampled tokens, pi(1).

– Our secret key for watermarking will be a sequence of uniformly distributed real
numbers between 0 and 1 generated by a pseudorandom number generator, {ui}.

– Then, at watermarked generation, the model outputs xi = 1 at the ith token if
ui ≤ pi(1).

– Since ui ∼ U(0, 1), this sampling procedure does not change the generative distri-
bution of the language model, but we can detect watermarked text if we possess
the secret key as follows.

– Let s(xi, ui) =

{
log(1

ui
) if xi = 1

log(1
1−ui

) if xi = 0

and then let c(x) =
∑L

i=1 s(xi, ui).

– For non-watermarked text, the expected value of c(x)−|x| is 0. On the other hand,
the expected value of c(x)−|x| for watermarked text is log(2)·H(Model(prompt)),
where H denotes Shannon entropy.

– However, this difference in expectation is made less useful by the high variance,
so the authors propose a better detector using empirical entropy.

– Can also be generalized to bigger vocabularies and variable length generations.

• https://arxiv.org/abs/2307.15593 [6]

– Emphasizes imprinting a watermark which simultaneously avoids distorting the
probability distribution of generated text and also is robust to removal attacks.

– Proposes several variants which are each similar to the previously discussed text
watermark.

– Unlike the previous work, this work thoroughly tests out the robustness of their
watermark and shows that their best variant is at least as detectable and robust
as the first watermark along with WinMax, even though this one does not distort
the probability distribution of generated text.

5.2 Diffusion Model Watermarking

https://arxiv.org/abs/2305.20030 [13]

• Embed a Fourier-space ring pattern into the initial noise used for generation. Invert
the FFT, and use that noise for generation with the DDIM generation algorithm.

• When presented with a generated image, invert the DDIM generation using an empty
prompt, and measure the distance of the initial noise (or a Fourier-space patch of it)
to that of the watermark pattern.

6

https://arxiv.org/abs/2306.09194
https://arxiv.org/abs/2307.15593
https://arxiv.org/abs/2305.20030

• If the distance from the initial noise to the watermark pattern is below a threshold,
then we say the image was generated by the watermarked model.

• This watermark seems to avoid any significant deleterious impact on the quality of
generations.

• This watermark is more robust to common image transformations (e.g. JPEG com-
pression, rotation, etc.) than existing image watermarks.

6 On the Relationship Between Model and Data Wa-
termarking

Model and text watermarking can be used to enforce the same policies but in different
settings. If a language model does not have a commercial license, then how can the owner
prove that a party used it illegally? In the case that the model was made publicly without
a commercial license, one way a company could detect that another party stole their model
is by accessing the allegedly stolen model, either its weights or predictions, and detecting
their proprietary model watermark. In the case that they did not make the model available
publicly but instead only allowed API access, then they can inspect text that the accused
party has generated in which case they may be able to detect if it is watermarked text
output by their own proprietary model.

7 Directions for improvement and future research

• The model watermarks we previously discussed require training, unlike the data water-
marks. So how can we apply a model watermark to a pretrained model with minimal
overhead?

– One way to embed a watermark is by fine-tuning the model for a very small
number of optimization steps on a batch of random data with random labels.
This approach has the benefit of being very cheap and maintaining a statistical
guarantee but has the disadvantage of possible unexpected degradations to the
pretrained model. Questions: How little fine-tuning can we get away with while
maintaining a strong watermark? Are there noticeable performance degradations
if we fine-tune on only the random data and not the original training data?

– An alternative way to distinguish a pretrained model from others without modi-
fying its parameters at all is to search for inputs which distinguish the particular
pretrained model from a database of others. For example, take your proprietary
LLM and search for inputs which give your model very different output than
LLaMa, LLaMa 2, and Falcon. These inputs can then be used to distinguish your
model from others in the future, but they carry no formal statistical guarantee.
Questions: Is it possible to get a guarantee? How can we do the optimization,
especially over text?

• Can you detect stolen feature extractors? Foundation models are often fine-tuned for
downstream tasks. In some cases, the labels for the downstream task differ from the
upstream labels, and practitioners drop a new prediction head on top of the feature

7

extractor. Question: Can we build watermarks that we can detect even after the model
has been fine-tuned and even with a new prediction head?

• Works on function-space model watermarking typically focus on classification, but
users may also deploy models for regression, language, diffusion, etc. It would be
valuable to generalize function-space model watermarking so that it can be applied
generically to any model users deploy.

• A downside of function-space watermarks is that they require function evaluations,
namely performing forward passes through the model so we can inspect its outputs.
Such forward passes can be expensive. Can we solve this problem, for example by only
doing forward passes through part of the model?

References

[1] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turning
your weakness into a strength: Watermarking deep neural networks by backdooring. In 27th
USENIX Security Symposium (USENIX Security 18), pages 1615–1631, 2018.

[2] Arpit Bansal, Ping-yeh Chiang, Michael J Curry, Rajiv Jain, Curtis Wigington, Varun Man-
junatha, John P Dickerson, and Tom Goldstein. Certified neural network watermarks with
randomized smoothing. In International Conference on Machine Learning, pages 1450–1465.
PMLR, 2022.

[3] Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models.
arXiv preprint arXiv:2306.09194, 2023.

[4] John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein.
A watermark for large language models. arXiv preprint arXiv:2301.10226, 2023.

[5] John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli Shu, Khalid Saifullah, Kezhi Kong,
Kasun Fernando, Aniruddha Saha, Micah Goldblum, and Tom Goldstein. On the reliability
of watermarks for large language models. arXiv preprint arXiv:2306.04634, 2023.

[6] Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust
distortion-free watermarks for language models. arXiv preprint arXiv:2307.15593, 2023.

[7] Erwan Le Merrer, Patrick Perez, and Gilles Trédan. Adversarial frontier stitching for remote
neural network watermarking. Neural Computing and Applications, 32:9233–9244, 2020.

[8] Sebastian Szyller, Buse Gul Atli, Samuel Marchal, and N Asokan. Dawn: Dynamic adversarial
watermarking of neural networks. In Proceedings of the 29th ACM International Conference
on Multimedia, pages 4417–4425, 2021.

[9] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. Embedding watermarks
into deep neural networks. In Proceedings of the 2017 ACM on international conference on
multimedia retrieval, pages 269–277, 2017.

[10] Jiangfeng Wang, Hanzhou Wu, Xinpeng Zhang, and Yuwei Yao. Watermarking in deep neural
networks via error back-propagation. Electronic Imaging, 2020(4):22–1, 2020.

[11] Tianhao Wang and Florian Kerschbaum. Attacks on digital watermarks for deep neural net-
works. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 2622–2626. IEEE, 2019.

[12] Tianhao Wang and Florian Kerschbaum. Riga: Covert and robust white-box watermarking of
deep neural networks. In Proceedings of the Web Conference 2021, pages 993–1004, 2021.

[13] Yuxin Wen, John Kirchenbauer, Jonas Geiping, and Tom Goldstein. Tree-ring water-
marks: Fingerprints for diffusion images that are invisible and robust. arXiv preprint
arXiv:2305.20030, 2023.

8

	Proof-of-Ownership
	Model Watermarks
	Desiderata

	Weight-Space Watermarking
	Function-Space Watermarking
	Data Watermarking
	Text Watermarking
	Diffusion Model Watermarking

	On the Relationship Between Model and Data Watermarking
	Directions for improvement and future research

